Равновесие тела при наличии трения качения

Рассмотрим цилиндр (каток), покоящийся на горизонтальной плоскости, когда на него действует горизонтальная активная сила S; кроме нее, действуют сила тяжести Р, а также нормальная реакция N и сила трения Т (рис. 6.10, а). При достаточно малом модуле силы S цилиндр остается в покое. Но этот факт нельзя объяснить, если удовлетвориться введением сил, изображенных на рис. 6.10, а. Согласно этой схеме равновесие невозможно, так как главный момент всех сил, действующих на цилиндр МСz= –Sr, отличен от нуля, и одно из условий равновесия не выпол­няется. Причина этого несоответствия состоит в том, что мы представляем это тело абсолютно твердым и предполагаем касание цилиндра с по­верхностью происходящим по образующей. Для устранения отмечен­ного несоответствия теории с опытом необходимо отказаться от гипотезы абсолютно твердого тела и учесть, что в действительности цилиндр и плоскость вблизи точки С деформируются и существует некоторая площадь соприкосновения конечной ширины. Вследствие этого в ее правой части цилиндр прижимается сильнее, чем в левой, и полная реакция R приложена правее точки С (см. точку С1 на рис. 6.10, б). Полученная схема действующих сил статически удовле­творительна, так как момент пары (S,Т) может уравновеситься мо­ментом пары (N,Р). В отличие от первой схемы (рис. 6.10, а), к цилиндру приложена пара сил с моментом МT=Nh.(6.11). Этот  момент называется  моментом  трения качения. h=Sr/, где h-расстояние от C до C1. (6.13). С увеличением модуля активной силы S растет расстоя­ние h. Но это расстояние связано с площадью поверхности контакта и, следовательно, не может неограниченно увеличиваться. Это зна­чит, что наступит такое состояние, когда увеличение силы S при­ведет к нарушению равновесия. Обозначим максимально возможную величину h буквой d. Величина d пропорциональна радиусу цилиндра и различна для разных материалов. Следовательно, если имеет место равновесие, то выполняется условие: h<=d.(6.14). d называется коэффициентом трения качения; она имеет размерность длины. Условие (6.14) можно также записать в виде Мт<=dN, или, учитывая (6.12), S<=(d/r)N.(6.15).  Очевидно, что максимальный момент трения качения MTmax=dN  пропорционален  силе  нормального давления.

Выберите раздел:

Сила. Система сил. Равновесие абсолютно твердого тела.

Аксиомы статики и их следствия:

Аксиома 1

Аксиома 2

Аксиома 3

Аксиома 4

Аксиома 5

Активные силы и реакции связей:

Принцип освобождаемости

Свойства связей

Основные задачи статики.

Приведение системы сходящихся сил к равнодействующей.

Условия равновесия системы сходящихся сил.

Сложение двух параллельных сил.

Момент силы относительно. точки и оси. Момент пары сил.

Теоремы о парах:

Теорема 1

Теорема 2

Теорема 3

Приведение системы пар к простейшему виду. Равновесие системы пар.

Лемма о параллельном переносе силы.

Основная теорема статики.

Условия равновесия пространственной системы сил.

Привидение плоской системы сил к простейшему виду.

Теорема Вариньона

Условия равновесия плоской системы сил.

Третья форма уравнений равновесия плоской системы сил

Равновесие тела при наличии трения скольжения.

Равновесие тела при наличии трения качения.

Центр параллельных сил.

Центр тяжести.